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SUMMARY

We review statistical methods for analysing healthcare resource use and costs, their ability to address skewness,
excess zeros, multimodality and heavy right tails, and their ease for general use. We aim to provide guidance on
analysing resource use and costs focusing on randomised trials, although methods often have wider applicability.
Twelve broad categories of methods were identified: (I) methods based on the normal distribution, (II) methods
following transformation of data, (III) single-distribution generalized linear models (GLMs), (IV) parametric
models based on skewed distributions outside the GLM family, (V) models based on mixtures of parametric
distributions, (VI) two (or multi)-part and Tobit models, (VII) survival methods, (VIII) non-parametric methods,
(IX) methods based on truncation or trimming of data, (X) data components models, (XI) methods based on
averaging across models, and (XII) Markov chain methods. Based on this review, our recommendations are that,
first, simple methods are preferred in large samples where the near-normality of sample means is assured. Second, in
somewhat smaller samples, relatively simple methods, able to deal with one or two of above data characteristics,
may be preferable but checking sensitivity to assumptions is necessary. Finally, some more complex methods hold
promise, but are relatively untried; their implementation requires substantial expertise and they are not currently
recommended for wider applied work. Copyright r 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well recognized that statistical analysis of healthcare resource use and cost data poses a number of
difficulties. These non-negative data often exhibit substantial positive skewness, can have heavy tails
and are often multimodal (e.g. with a mass at zero for non-users). The traditional approach for handling
such non-normal data in medical statistics has been to use non-parametric methods, such as rank order
statistics. Nevertheless, it is widely accepted in health economics that it is the estimated population
mean cost that is the statistic of interest to policy makers (Arrow, 1970). Two broad areas have emerged
for the statistical modelling of cost data.

In the ‘randomized evaluation’ field, healthcare resource use and cost data are collected, often
alongside randomised controlled trials of limited sample size, in order to study the impact of
interventions or policies on average costs in terms of mean cost difference, while minimising bias. These
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studies are used to evaluate the effectiveness, cost-effectiveness and other effects of interventions and
guide treatment and policy decisions. In general, more complex approaches for the analysis of mean
costs in such studies that take into consideration the specific features of the data might lead to gains in
precision and to more informative estimates, but could run a risk of misfitting or overfitting the data.
The ‘health econometrics’ field is characterised by the use of large quantities of mostly observational
data to model individual healthcare expenditures, with a view to understanding how the characteristics
of the individual, including their health status or recent medical experience, influence overall costs.
A theoretical behaviour model might be used within the framework to shed light on processes in action.
Observational data are vulnerable to biases in estimating effects due to non-random selection and
confounding that are avoided in randomised experimental data.

The literature on evaluating costs for the purpose of cost-effectiveness analysis and that on health
econometrics have developed largely independently. This paper provides a novel review of the analytical
approaches to evaluating mean resource use and costs and mean cost differences employed in both
areas, with a particular focus on their applicability to mean cost differences estimated in randomised
trials. Although the fundamental interest relates to the raw cost scale, analysis can be performed on a
different scale for the purposes of estimation provided a mechanism exists for returning to the original
cost scale. The objective is to examine the state-of-the-art of statistical analysis of healthcare resource
use and cost data, by identifying the methods employed, their ability to address the challenges of the
data and their ease for general use. Based on this review, we propose a framework to guide researchers
when analysing resource use and costs in clinical trials. We exclude from this review methods for
estimation of behavioural economic models or adjusting for selection bias and measurement errors. An
overview of health economics estimation strategies using individual level data and microeconometric
techniques is provided elsewhere (Jones, 2000).

Previous work has noted the lack of a dominant approach that provides both unbiased and efficient
estimates (Manning and Mullahy, 2001) and the need to perform checks and validations to find a
suitable model (Buntin and Zaslavsky, 2004). Recently, Basu and Manning (2009) concluded, ‘No
current method is optimal or dominant for all cost applications. Many of the diagnostics used in
choosing among alternatives have limitations that need more careful study. Several avenues in modeling
cost data remain unexplored.’ In our more comprehensive and systematic review, we come to broadly
similar conclusions, but we also go further and offer some general advice to researchers on the choice of
methods when estimating mean costs.

2. REVIEW METHODS

2.1. Identification of papers for inclusion in the review

The review aims to identify the analytical methods currently employed or suggested for evaluating
healthcare resource use and costs that are likely to be applicable to randomised trial data. A number of
exclusion criteria were employed in order to limit the scope of what might potentially include a very
large literature.

1. As the focus of the review was methodological, we did not aim to incorporate all applications of
these methods to different data sets but important modifications were reviewed.

2. Analytical methods developed to account for selection bias, unobserved heterogeneity or
measurement error were considered beyond the scope of this review.

3. Methods that do not allow for (or do not focus on) the estimation of the mean costs or mean cost
differences (between interventions) on the untransformed scale were also excluded.

4. Methods aimed to address particular aspects of evaluating costs alongside multinational or multi-
centre trials were not reviewed.
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Analytical methods that account for administrative censoring and missing data, which are usually
present in randomised trials, are not explicitly reviewed but are briefly summarised in a web appendix
(www.herc.ox.ac.uk/downloads/support_pub).

The three stage process employed to identify the key publications to include in this review is outlined
in Figure 1. First, a broad search of Medline, EconLit and MathSci bibliographic databases generated
250 publications of possible methodological interest. Applying the criteria above reduced these to 48
key publications. In the second stage, a brief outline of the review objectives together with the list of
these key publications were sent to 41 individuals working in the area (identified through known
contacts and posting to relevant email discussion lists such as healthecon-all@jiscmail.ac.uk) with a
request to suggest further published research for inclusion in the review. In all, 23 researchers responded
and suggested a further 38 publications of potential interest of which 19 met the inclusion criteria
(9 papers by one author were replaced with a subsequent review paper by the same author). In the final
stage, a review of the citations from the studies included in the review and searching recent issues of key
journals yielded a further 30 studies for inclusion. In total 97 manuscripts were therefore included in the
review. No explicit quality criteria for the studies reviewed was employed as our aim was to identify all
relevant suggested methods.

2.2. Review process

The identified papers were reviewed by two of the authors (B. M. initially reviewed all papers and each
of the remaining authors reviewed a proportion of the papers). A template summarizing the relevant
details for each paper was completed. In total 72 review templates were developed, of which 11 covered
more than one paper. Manuscripts by the same author(s) presenting methods from the same category
were summarised in a single template. Each template aimed to present a structured factual review of the
paper(s) focusing on the method(s) employed, data used and overall methodological findings and
conclusions. The summarised details included (a) the parameters of interest and the representation of
the estimation error; (b) statistical model and estimation method(s), (c) ease of implementation, (d)
characteristics of the applied or simulated data used (including sample size) and (e) the authors’
conclusions with respect to the analytical method used. In addition, the review authors tried to judge the
ability of the methods to (1) address skewness, multimodality and kurtosis in data; (2) incorporate
adjustment for covariates and extend to cost-effectiveness analysis and (3) be applicable to data sets of
small to moderate sample sizes usually available in randomised studies, where these issues were not
explicitly considered by the authors themselves.

3. REVIEW RESULTS

3.1. Categorising the analytical approaches

Based on the reviewed papers, 12 categories of analytical approaches currently employed to evaluate
mean healthcare resource use and costs were identified. These categories are outlined below together
with a brief description. The review templates are available in the web appendix (www.herc.ox.ac.uk/
downloads/support_pub).

3.1.1. Normal distribution-based methods. Methods based on the normal distribution are widely
employed in the estimation of mean healthcare resource use and costs. They include inference based on
the sample mean (such as the t-test) and linear regression approaches (such as ordinary least squares,
OLS). These methods present results on the scale of interest and provide unbiased estimates for
randomised data. However, as illustrated in comparative studies, they are sensitive to extreme values
and likely to be inefficient in small to medium sample sizes if the underlying distribution is not normal
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• 41 key researchers working in the area identified ( through personal contacts, 
authorship of published papers; publicising in electronic directories of 
professionals) 

• The outline of the review project, list of key publications and a request for 
identifying further publications sent to them   

19 papers excluded following the exclusion criteria

Search electronic libraries [November 2005]: Medline, EconLit, MathSci 
Search terms (filter strategy): (a) AND [(b) OR (c) ] 
        (a) model OR analys*         
        (b) health AND (expenditure OR cost OR data ) 
        (c) “risk adjustment” OR “covariate adjustment”

~250 abstracts identified

Select if manuscript seems to: 
(1) evaluate healthcare resource use or costs; and 
(2) evaluation method is mentioned in abstract 

112 full text articles 
reviewed 

Select manuscript if of key methodological 
interest and passes the exclusion criteria. 

48 key manuscripts 
identified 

23 (56%) of researchers responded 
38 further publications of potential interest 

identified

Stage 2 

30 further papers identified through the references or citation of 
already included papers, recent publications in main health 
economics journals or anonymous reviewer suggestions 

Stage 3 

97 papers fully reviewed 
72 review templates developed with 11 

templates based on more than one paper 

Stage 1 

Figure 1. Flow chart of selection of papers into the review
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(Austin et al., 2003; Basu, 2005; Briggs et al., 2005; Briggs and Gray, 1998; Chen and Zhou, 2006; Deb
and Burgess, 2003; Dinh and Zhou, 2006; Duan et al., 1983; Dudley et al., 1993; Gilleskie and Mroz,
2004; O’Hagan and Stevens, 2003; Thompson and Barber, 2000; Zhou, 2002; Zhou and Dinh, 2005).
Generalised least squares estimators or Huber/White estimate of the variance–covariance matrix for
OLS regression are often used to achieve consistent estimates in such situations (Manning, 1998).

3.1.2. Methods following transformation of data. For these methods the individual healthcare resource
use or cost data is transformed in order to overcome problems of skewness and comparison of means on
the transformed scale (Briggs and Gray, 1998) or OLS type approaches (as above) to model the
transformed dependent variable are employed (Ai and Norton, 2000; Duan et al., 1983; Manning and
Mullahy, 2001; Veazie et al., 2003). Although more precise and robust, these comparisons of means on
the transformed scale do not directly inform the comparison of means on the original scale and back
transformation of the results to the original scale is required (Duan, 1983).

Approaches to find an appropriate transformation have centred predominantly on the Box–Cox
transformations (to achieve symmetry in error), with log transformation often prevailing when
modelling costs. The power of transformation is commonly selected based on the data, but treated as
known when estimating the model parameters, which is likely to affect the confidence interval for the
mean estimates. Taylor (1986) has shown that using the estimated value for the power (with its
uncertainty) is feasible in most cases, and will provide more accurate confidence intervals; the price in
precision is likely to be small compared to assuming the power known. When the power is estimated
close to zero with large variance, however, more precision is lost. A Bayesian approach incorporating
estimation for the power has also been suggested (Hollenbeak, 2005).

The approaches for back transformation to the original scale are dictated by the nature of the error
term on the transformed scale. Under the assumption of normality of the error term, the mean on the
untransformed scale can be directly estimated from the estimates of model parameters and variance.
The distribution of the error term is however usually unknown, and reliance on the assumption of
normality or homoskedasticity can lead to inconsistent estimates. Thus, the approaches for back
transformation are dominated by Duan’s non-parametric smearing when the error term is
homoskedastic (Duan, 1983) and its variants when the error term is heteroskedastic across the
compared groups (Ai and Norton, 2000; Duan et al., 1983; Manning, 1998). Alternative approaches of
direct numerical integration over fully parameterized error distributions are proposed by Abrevaya
(2002) and Ai and Norton (2000), while Ai and Norton (2008) propose a more general semi-parametric
approach.

The methods employing an initial data transformation are shown to provide potentially more
efficient estimates in heavy-tailed data (Manning and Mullahy, 2001; O’Hagan and Stevens, 2003), but
can perform badly if an inappropriate transformation is used (Briggs et al., 2005). Certain
transformations (e.g. logarithmic) are also not appropriate for zero data. Adding a constant to the
zero responses is generally not recommended: first the constant chosen is somewhat arbitrary, second it
does not acknowledge that the observed zeros might be influenced differently by covariates than the
positive responses and third it has been shown to perform poorly with some evidence for overfitting (e.g.
mishandling of both non-users and significant users of health services) (Duan et al., 1983).

3.1.3. Single distribution generalized linear models. In generalized linear models (GLMs) a mean
function (between the linear predictor and the mean) and a variance function (between the mean and
variance on the original scale) are specified and the parameters are estimated given these structural
assumptions (see general theory in Blough et al. (1999)). This approach addresses linearity in response
on the specified scale and accommodates skewness through variance weighting. Although misspecifica-
tion of the variance function could lead to inefficiencies, the mean function estimates are usually robust
(Manning and Mullahy, 2001). As the estimation is directly on the scale of raw data, unlike the
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transformation-based approaches, there is no need for back transformation. These models are used
both for modelling costs (e.g. Gamma specification) as well as resource use (e.g. Poisson and negative
binomial specifications). Extensions of the standard GLM approach are provided based on extending
the family of distributions (Manning et al., 2005), more complex specification of the mean–variance
relationships (Basu, 2005; Basu et al., 2006; Blough et al., 1999) and GLM estimators that are more
robust to outliers (and potentially more suitable for very heavy-tailed data) (Cantoni and Ronchetti,
2001; Cantoni and Ronchetti, 2006). GLMs are also used in two-part models to model the positive
resource use and cost data (see Section 3.1.6 below). The most widely used GLM model with log link
has been shown to suffer substantial efficiency losses when the log-scale error variance is large or the
error distribution on the log scale is symmetric but heavy-tailed, but is more efficient for alternative
shapes of the distribution (Manning and Mullahy, 2001). Heteroskedasticity in the error variance on the
log-scale can also be problematic in a GLM model if not properly modelled. For a guide to analysts on
how to choose among exponential conditional mean models see Manning and Mullahy (2001), Buntin
and Zaslavsky (2004) and Manning et al. (2005). The Generalized Gamma model (Manning et al., 2005)
also extends the shapes of distributions (e.g. Weibull and OLS for the lognormal models are included)
and provides further tests of appropriateness of GLM or OLS following log transformation.
Furthermore, although GLM model specifications could be informed by the data (Blough et al., 1999),
the estimation for the link and variance and the incorporation of the uncertainty from this estimation
(including underlying heteroscedasticity) in the final parameter estimates is rarely done; for an exception
see the Extended Estimating Equations approach in Basu and Rathouz (2005).

3.1.4. Parametric models based on skewed distributions outside the GLM family of distributions. Methods
based on distributions outside the GLM family have been used to improve flexibility of previous
parametric models while modelling healthcare costs or resource use. Two and three-parameter
lognormal and log-logistic distributions are used by Nixon and Thompson (Nixon and Thompson,
2004; Thompson and Nixon, 2005) to model costs, and lognormal and Weibull models are used by
Marazzi et al. (1998) to model length of stay in hospital. General methods for count data have been
extensively described elsewhere (Cameron and Trivedi, 1998; Winkelmann, 2008). Extended approaches
based on the Poisson distribution by Cameron and colleagues (Cameron and Johansson, 1997;
Cameron and Trivedi, 1986) (negative binomial and variance linear in the mean, Poisson polynomial
model) and Grootendorst (1995) (zero-inflated Poisson and negative binomial) are used to model
resource use. The zero-inflated Poisson and negative binomial specifications have been shown to suffer
convergence problems if the same covariates are used for both parts (Grootendorst, 1995). These further
parametric alternatives aim to achieve better fit to data (e.g. in terms of deviance) but studies failed to
confirm that better fit translates into more reliable inferences potentially due to models over-fitting
extreme observations (Nixon and Thompson, 2004; Thompson and Nixon, 2005).

3.1.5. Models based on mixture of parametric distributions. Models based on mixtures of parametric
models are introduced as a flexible way to accommodate excess zeros, overdispersion and heavy tails
that might lead to more robust estimates. A further motivation for mixture models is the concern that
different parts of the response distribution could be differently affected by covariates (i.e. rare users, low
cost users, high cost users). Mixtures of Poisson distributions (Mullahy, 1997) and negative binomial
distributions (Deb and Holmes, 2000; Deb and Trivedi, 1997; Jimenez Martin et al., 2002) have been
suggested for resource use data, and mixtures of Gamma distributions for cost data (Deb and Burgess,
2003). The papers presenting applications of mixture models on cost data have focused on modelling
positive cost data, while modelling excess zeros is likely to present a problem. A mixture of distributions
from different families has been shown to improve on a mixture of distributions from the same family
(Atienza et al., 2008). Mixture models often perform better than model alternatives based on single
distributions for total resource use or costs. Computational difficulties can arise as often the log
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likelihood function has multiple maxima and choosing a suitable optimisation procedure is needed.
Furthermore in the case of unknown separation (latent mixture models) and more than two components
the identification of all components might be difficult because of the increasing overlap of distributions
(Cameron and Trivedi, 2009). More robust estimation procedures via alternatives to maximum
likelihood have been recently suggested (Lu et al., 2003). Mixture models with known separation
(e.g. two-part models in the subsequent category) do not exhibit such estimation issues.

3.1.6. Two (or multi)-part models (also hurdle models for count data) and Generalised Tobit models. The
two-part model is a special case of a mixture model in which only two components are allowed and one
of these is degenerate (a probability distribution whose support consists of only one value); these
components (unlike mixture models) are separately and independently estimated. These models have
been widely employed in situations where, due to large numbers of non-users of health services, there
are excess zeros in the resource use or cost data and the assumption of normality of the error term is not
satisfied. Usually, a logit or probit model for the first part estimates the probability of incurring any
resource use or costs, while the mean resource use or costs, conditional on having incurred any, are
evaluated in the second part. Log-linear (Duan et al., 1983; Leung and Yu, 1996), GLM or OLS
models have been employed in the second part to evaluate mean costs, and truncated-at-zero Poisson,
negative binomial (Grootendorst, 1995; Pohlmeier and Ulrich, 1995), or truncated Poisson-lognormal
models (Winkelmann, 2004) to evaluate resource use (for a wider range of hurdle models please refer to
Hilbe (2007)).

Extensions to the standard two-part model have been identified in our review. A Weibull survival
model was suggested for the hazard of initiating mental health service use as duration on treatment
(time from initiating treatment to end of year) was indicative of cost (Keeler et al., 1988). Santos-Silva
and Windmeijer suggest more appropriate modelling of spells of care and number of visits per spell
through a Poisson model for the first part (number of spells) and a logarithmic model for the second
part (number of visits per spell) (Santos-Silva and Windmeijer, 2001). A semi-parametric two-part
model for count regression (including Poisson or negative binomial hurdle models as a special case) is
suggested by Gurmu (1997), and can be extended through a semi-parametric single-index two-part
regression model (Zhou and Liang, 2006). A hurdle model with a generalised logistic model in the first
part is proposed by Gurmu (1998) and a modified second part in the two-part model is suggested by
Mullahy (1998). A Bayesian implementation of a two-part model in WinBUGS is illustrated by Cooper
et al. (2003). Another extension uses a Poisson-lognormal model to improve flexibility when modelling
positive outcomes (Winkelmann, 2004). A four-part specification was proposed by Duan et al. (1983)
for different resources use categories, and motivates the discussion on how many parts are needed. The
authors show that modelling different components of resource use improves the consistency of the
model without issues of data overfitting, but does not improve efficiency compared to a two-part model,
presumably due to insufficient sample size. The specification of this four-part models also might be
considered an example of data components models (see Section 3.1.10 below).

Two-part models are shown to perform better than single-equation models in terms of split sample
mean-squared forecast error as they accommodate heterogeneity between users and non-users as well as
heterogeneity across users based on level of use (Duan et al., 1983), but mixture models are suggested to
be more appropriate if distinct population groups contribute to different patterns of use (Deb and
Holmes, 2000). Also, when transformation of data is employed, the need for back transformation to the
original scale emerges and is exacerbated in the case of two-part models due to added conditionality. In
this regard, Mullahy (1998) proposes two estimators using exponential conditional mean specifications.
An extension of Duan’s smearing estimate which combines the two parts of the two-part model, with
explicit accounting for heteroscedasticity and zero observations, to produce mean estimates on the
original scale is developed by Welsh and Zhou (2006).
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Although we explicitly exclude selection models from the current review (as zeros are genuine
observations rather than unobserved), we will discuss the generalized Tobit model that allows for
correlation between the propensity to use healthcare services and the level of use. Also, unlike the
sample selection model, it acknowledges as genuine the zero data points (van de Ven and Van Praag,
1981) and, unlike the Tobit model, allows for different covariates in the two parts, bivariate normal
error term and possibly a transformation for the positive outcome part. A debate on the superiority of
two-part or selectivity models has developed following the use of two-part models in the RAND Health
Insurance Experiment (HIE) (Duan et al., 1983). Hay and Olsen (1984) argue that if the two parts are
not independent the conditional error distribution in the first part will be a function of covariates and
should be made explicit in the estimation. The benefits of this proposition have not been observed in the
case of the RAND HIE and are unlikely to hold generally in randomised studies when the interest is in
the estimated mean (Duan et al., 1984; Maddala, 1985; Manning et al., 1987). It has also been shown
that co-linearity problems and violation of the bivariate normality assumption for the error term, likely
in health data sets, lead to poor performance of selectivity models and the two-part model is likely more
efficient (Leung and Yu, 1996; Manning et al., 1987). An extended two-part model, which explicitly
models and estimates the correlation between the logistic and lognormal part for repeated measures
data, is suggested by Tooze (Tooze et al., 2002) and is shown to outperform the model with uncorrelated
random effects.

3.1.7. Survival (or duration) methods. General methods to adjust for censoring are not explicitly
reviewed here, but are briefly summarised with key references in the web appendix. Survival data
models, considering cost as the ‘time’ variable, can relax the parametric assumptions of the exponential
conditional mean models, and might be advantageous particularly for data with skewness, heavy tails
and multimodality and are thus reviewed here. Survival data-based approaches. such as the semi-
parametric Cox proportional hazards model (Austin et al., 2003; Basu et al., 2004; Dudley et al., 1993;
Lipscomb et al., 1998) and the parametric Weibull proportional hazards model (Dudley et al., 1993)
have been shown to perform well when the underlying proportional hazards assumption is met (Austin
et al., 2003; Dudley et al., 1993) but produce biased estimates otherwise (Basu et al., 2004). Basu and
Manning (2006) proposes a test for the proportional hazards assumption within the class of exponential
conditional mean models that performs similarly to a traditional test based on the Cox proportional
hazards regression.

Another survival type approach suggested in the literature is the Aalen regression model with additive
hazard function (Pagano et al., 2008). This method does not require the proportionality in hazards (an
assumption imposed in the Cox and Weibull proportional hazards models), conveniently preserves the
additivity of the covariates’ effects on the outcome measure and can perform well in large data sets with
censoring.

3.1.8. Non-parametric methods. Two common approaches to directly evaluate uncertainty in costs,
effects and/or cost-effectiveness in randomised trials are the Central Limit Theorem and the bootstrap
approach (Barber and Thompson, 2000; O’Hagan and Stevens, 2003; Thompson and Barber, 2000).
While the first approach relies on normality of sample mean costs and/or effects with large number of
participants, independently of the population distribution of costs and/or effects, the latter uses
empirical estimation of the sampling distribution of mean costs and/or effects by resampling from the
data set with replacement and re-estimating the sample means for each replicate. Both approaches are
asymptotically valid as sample sizes increase, but have uncertain properties in smaller non-normally
distributed data samples. Different bootstrap procedures are compared by Barber and Thompson
(2000) who suggest that some bootstrap approaches (bootstrap-t and bias corrected bootstrap) might be
more reliable than others. O’Hagan and Stevens (2003) criticize the bootstrap and the Central Limit
Theorem approaches as inefficient for use with skewed healthcare cost data and caution against their

B. MIHAYLOVA ET AL.904

Copyright r 2010 John Wiley & Sons, Ltd. Health Econ. 20: 897–916 (2011)

DOI: 10.1002/hec



use with small data sets. A recent study which compared the performance of the two approaches
concluded that they both provide accurate mean estimates even in relatively small samples from skewed
distributions, with the Central Limit Theorem-based methods providing at least as accurate estimates of
standard errors as the bootstrap (Nixon et al., 2009). Approaches based on Edgeworth expansion of the
t-test or a modification of t-test based on a generalized pivotal statistic add flexibility to account for
skewness and have been shown to provide more efficient estimates but these modifications are subject to
a degree of subjectivity in the choice of transformation and do not generally allow for adjustment for
covariates (Chen and Zhou, 2006; Dinh and Zhou, 2006; Zhou and Dinh, 2005).

Quantile-based smoothing methods can improve efficiency by borrowing strength from similarities in
data sets, but assuming such similarities could also lead to biases (Dominici and Zeger, 2005).
Regression of the quantiles of costs (Wang and Zhou, 2010) has been shown to have competitive and
more robust performance compared to the smooth quantile ratio estimator (Dominici et al., 2005),
maximum likelihood estimator, generalised linear models based on quasilikelihood (Blough and
Ramsey, 2000), and the internal weighted estimator (Welsh and Zhou, 2006) in various heteroscedastic
models. A non-parametric method based on a discrete approximation of the density function of the
outcome using a sequence of conditional probability density functions is shown to provide robust
conditional mean estimates, at least in large data sets, when mass at zero or multimodality is present in
data or when covariate effects differ over ranges of the outcome (Gilleskie and Mroz, 2004). A semi-
parametric mixture that models the bulk of the data (non-extreme values) with piecewise constant
densities and the tails (extreme values) with a generalised Pareto distribution while taking into account
the tail model uncertainty provides further flexibility to model well data with very different shapes
(including multimodal data), but might not be efficient if only sparse data are available in the tail of the
distribution (Conigliani and Tancredi, 2005).

3.1.9. Methods based on truncation or trimming of data. A series of papers by Marazzi (Marazzi, 2002;
Marazzi and Barbati, 2003; Marazzi and Ruffieux, 1999; Marazzi and Yohai, 2004) illustrates the use of
truncation to provide more robust estimates of the mean. Data are modelled using parametric
distributions, which are subsequently truncated from both ends (to discard contaminants) in such a way
as to preserve the mean of an underlying uncontaminated distribution. A degree of robustness is
claimed under moderate contamination. The approach is based on the important assumption that the
data are contaminated (in particular with high values) that is not appropriate in the case of healthcare
resource use and costs where zero or high observations are true values. Therefore, these approaches can
lead to substantial bias in estimation of the mean.

3.1.10. Data components models. An emerging area of research is analysis in which components of
resource use or costs are modelled separately under a common analytical framework. The applications
published to date refer to components of costs or resource use modelled as bivariate or multivariate
normally or lognormally distributed data (Hahn and Whitehead, 2003; Lambert et al., 2008). Lambert
et al., also illustrate the possibility to increase the flexibility using a two-part model for cost components
with excess zeros (Lambert et al., 2008). The four-part model in Duan (1983) (see Section 3.1.6) is also in
essence a data components model.

Analytical extensions to model components of healthcare resource use simultaneously include: a
bivariate Poisson distribution (Cameron and Johansson, 1998), negative binomial marginal distribution
and copula functions (Cameron et al., 2004), independent Poisson distributions with conditional mean
functions that depend on correlated latent effects (Chib and Winkelmann, 2001), a multivariate over-
dispersed Poisson mixture model (Gurmu and Elder, 2000), bivariate Poisson-lognormal mixture and
bivariate negative binomial regression models (Munkin and Trivedi, 1999), and a bivariate zero-inflated
binomial regression for count data with excess zeros (Wang, 2003). These models currently represent
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possibilities for research, and, although better fit to data is often reported, there is limited evidence on
whether they may overfit data and on efficiency of the estimators.

3.1.11. Methods based on averaging across a number of models. Another recent area of research has
explored whether averaging results across a number of parametric models (the model averaging
approach) could lead to better performance when modelling resource use and cost data given that a
priori knowledge of a single appropriate model is not available. Conigliani and Tancredi (2006; 2009)
showed that the performance of Bayesian model averaging depends on what models are averaged over
and whether there was a model included that fits the data well; otherwise an approach based on
mixtures of distributions seemed more appropriate in terms of coverage.

3.1.12. Markov chain methods. An approach based on a finite Markov chain is suggested to estimate
resource use over different phases of health care (Coxian phase-type distribution) and evaluate total cost
by attaching unit costs to these phases (Marshall et al., 2007). A way to implement adjustment for
covariates through Bayesian belief networks is also proposed (Marshall and McClean, 2003).
An implementation of the approach in evaluating mean length of stay shows better in-sample fit of a
phase-type distribution compared with lognormal and gamma models (Faddy et al., 2009). This
dynamic modelling approach could be very flexible but relies on sufficient data to allow robust
modelling and estimation. Also, although the approach was applied to two data sets, more research is
needed into its robustness and efficiency in terms of evaluating (conditional) means.

3.2. Ability of the identified analytical approaches to address the characteristics of healthcare resource use

and cost data

Table I summarises our judgement with respect to the ability of the identified analytical approaches to
account for the skewness, heavy tails, excess zeros and multimodality in data, under the adopted
analytical categorisation.

3.2.1. Skewness and heavy tails. The use of initial transformation of the data or explicit use of skew
parametrics distributions (GLM family and other distributions) can allow appropriately for skewness in
data. Right tails, heavier than those of the normal distribution, are often observed with resource use and
cost data. Manning and Mullahy (2001) report more efficient estimates of OLS models on log-
transformed data (compared to a GLM with log link) in the case of large log-scale variance or heavy tail
log-scale residuals. On the other hand misspecification of the shape of the distribution can reduce the
efficiency of the OLS model on log-transformed data. Extension of the GLM to a Generalised Gamma
model (that incorporates lognormal model as a special case) performs well on heavy-tailed data even
when the log-error is asymmetric (Manning et al., 2005). If the link function is not known a priori the
Extended Estimating Equations model might be suitable alternative but it needs large samples (Basu
et al., 2006; Hill and Miller, 2010).

The approaches based on mixtures of distributions, data components or model averaging seem to add
further flexibility in acknowledging difficulties in explicitly modelling the skewness in the data. The Cox
proportional hazards semi-parametric model is shown to perform well, at least when the proportional
hazards assumption is met, presumably due to the non-parametric evaluation of the underlying baseline
hazard. The Markov chain methods are also suggested to provide flexibility in modelling skewed, heavy-
tailed longitudinal data.

3.2.2. Excess zeros and multimodality. Two-part models seem to outperform other methods when excess
zeros are present in data, although models based on mixtures of distributions (Deb and Trivedi, 2002),
non-parametric density approximation and proportional hazards methods are shown to perform well in

B. MIHAYLOVA ET AL.906

Copyright r 2010 John Wiley & Sons, Ltd. Health Econ. 20: 897–916 (2011)

DOI: 10.1002/hec



T
a
b
le
I.

S
u
m
m
a
ry

ch
a
ra
ct
er
is
ti
cs

o
f
th
e
re
v
ie
w
ed

m
et
h
o
d
s
fo
r
m
o
d
el
li
n
g
co
st

a
n
d
re
so
u
rc
e
u
se

d
a
ta

in
m
o
d
er
a
te

si
ze

d
a
ta

F
ea
tu
re
s
o
f
d
a
ta

F
ea
tu
re
s
o
f
m
et
h
o
d

A
n
a
ly
ti
ca
l
a
p
p
ro
a
ch

S
k
ew

n
es
s

H
ea
v
y

ta
il
s

E
x
ce
ss

ze
ro
s

M
u
lt
i-

m
o
d
a
li
ty

T
es
ti
n
g
fo
r

co
st

d
if
fe
r-

en
ce

C
o
v
a
ri
-

a
te

a
d
-

ju
st
m
en
t

A
n
a
ly
si
s
o
n

o
ri
g
in
a
l
sc
a
le
/

N
o
n
ee
d
to

b
a
ck

tr
a
n
s-

fo
rm

W
o
rk
s

w
it
h
sm

a
ll

sa
m
p
le
s�

E
a
se

o
f

im
p
le
m
en
-

ta
ti
o
n

I.
M
et
h
o
d
s
b
a
se
d
o
n
th
e
n
o
rm

a
l

d
is
tr
ib
u
ti
o
n

L
L

L
L

H
H

H
L

H

II
.
M
et
h
o
d
s
fo
ll
o
w
in
g
tr
a
n
sf
o
rm

a
ti
o
n
o
f

d
a
ta

H
H

L
L

P
H

L
P

P

II
I.
S
in
g
le
-d
is
tr
ib
u
ti
o
n
g
en
er
a
li
ze
d
li
n
ea
r

m
o
d
el
s
(G

L
M
)

H
P

L
L

H
H

H
P
L
a

H

IV
.
P
a
ra
m
et
ri
c

m
o
d
el
s

b
a
se
d

o
n

sk
ew

ed
d
is
tr
ib
u
ti
o
n
s
o
u
ts
id
e
th
e
G
L
M

fa
m
il
y

H
P

L
L

H
H

H
P
L
b

P

V
.
M
o
d
el
s
b
a
se
d

o
n

m
ix
tu
re

o
f
p
a
ra
m
et
ri
c

d
is
tr
ib
u
ti
o
n
s

H
H

P
H

P
H

H
P

L

V
I.
T
w
o
-p
a
rt

a
n
d
h
u
rd
le

m
o
d
el
s

H
P
H

c
H

L
P

H
L
H

c
P
L
c

P
H

c

V
II
.
S
u
rv
iv
a
l
(o
r
d
u
ra
ti
o
n
)
m
et
h
o
d
s

(i
)
S
em

i-
p
a
ra
m
et
ri
c
C
o
x
a
n
d
p
a
ra
m
et
ri
c

W
ei
b
u
ll
p
ro
p
o
rt
io
n
a
l
h
a
za
rd
s
m
o
d
el

H
H

H
P

P
H

H
P

H

(i
i)
A
a
le
n
a
d
d
it
iv
e
h
a
za
rd

m
o
d
el

H
H

L
P

P
P

H
L

L
V
II
I.
N
o
n
-p
a
ra
m
et
ri
c
m
et
h
o
d
s:

(i
)
C
en
tr
a
l
L
im

it
T
h
eo
re
m

a
n
d

B
o
o
t-

st
ra
p
m
et
h
o
d
s

P
P

L
L

H
H

H
P

H

(i
i)
N
o
n
-p
a
ra
m
et
ri
c
m
o
d
ifi
ed

es
ti
m
a
to
rs

b
a
se
d

o
n

p
iv
o
ta
l
st
a
ti
st
ic

o
r
E
d
g
e-

w
o
rt
h
ex
p
a
n
si
o
n

H
P

L
L

P
L

H
P

H

(i
ii
)
N
o
n
-p
a
ra
m
et
ri
c
d
en
si
ty

a
p
p
ro
x
im

a
ti
o
n

H
H

H
H

P
H

H
L

P
L
d

(i
v
)
Q
u
a
n
ti
le
-b
a
se
d
sm

o
o
th
in
g

H
H

H
H

H
H

P
L

L
IX

.
M
et
h
o
d
s
b
a
se
d
o
n
d
a
ta

tr
im

m
in
g

L
L

L
L

L
L

H
P
L
e

H
X
.
D
a
ta

co
m
p
o
n
en
ts

m
o
d
el
s

H
P

P
H

P
H

H
P
L
f

L
X
I.
M
o
d
el

a
v
er
a
g
in
g

H
H

P
H

P
H

H
L

L
X
II
.
M
a
rk
o
v
ch
a
in

m
et
h
o
d
s

H
H

P
H

P
P

H
L

L

H
,
H
ig
h
a
p
p
li
ca
b
il
it
y
;
P
,
P
o
ss
ib
le

a
p
p
li
ca
b
il
it
y
;
L
,
L
o
w

a
p
p
li
ca
b
il
it
y
.

� S
m
a
ll
sa
m
p
le

re
fe
rs

to
te
n
s
to

a
fe
w

h
u
n
d
re
d
s
o
f
p
a
rt
ic
ip
a
n
ts
.

a
M
o
re

co
m
p
le
x
G
L
M
s
re
q
u
ir
e
la
rg
e
sa
m
p
le

si
ze
s,
a
s
d
o
es

ch
ec
k
in
g
p
a
ra
m
et
ri
c
m
o
d
el
li
n
g
a
ss
u
m
p
ti
o
n
s.

b
C
h
ec
k
in
g
p
a
ra
m
et
ri
c
m
o
d
el
li
n
g
a
ss
u
m
p
ti
o
n
s
n
ee
d
s
la
rg
e
sa
m
p
le

si
ze
.

c
T
h
e
a
b
il
it
y
to

m
o
d
el

h
ea
v
y
ta
il
s
d
ep
en
d
s
o
n
th
e
m
o
d
el

u
se
d
in

th
e
se
co
n
d
p
a
rt
.
If

th
e
m
o
d
el

u
se
d
in

th
e
se
co
n
d
p
a
rt

is
fr
o
m

C
a
te
g
o
ry

II
‘M

et
h
o
d
s
b
a
se
d
o
n
n
o
rm

a
li
ty

fo
ll
o
w
in
g
a
tr
a
n
sf
o
rm

a
ti
o
n
o
f
th
e
d
a
ta
’
b
a
ck

tr
a
n
sf
o
rm

a
ti
o
n
w
il
l
b
e
n
ee
d
ed
.
C
h
ec
k
in
g
m
o
d
el
li
n
g
a
ss
u
m
p
ti
o
n
s
n
ee
d
s
re
a
so
n
a
b
le

sa
m
p
le

si
ze
.
T
h
e
ea
se

o
f
im

p
le
m
en
ta
ti
o
n

d
ep
en
d
s
o
n
th
e
m
o
d
el
s
u
se
d
in

th
e
tw

o
p
a
rt
s.

d
T
h
es
e
a
p
p
ro
a
ch
es

a
re

n
o
t
a
v
a
il
a
b
le

in
st
a
n
d
a
rd

st
a
ti
st
ic
a
l
so
ft
w
a
re
.

e
D
ep
en
d
s
o
n
d
a
ta
;
in

sm
a
ll
sa
m
p
le
s
o
p
p
o
rt
u
n
it
ie
s
to

ch
ec
k
p
a
ra
m
et
ri
c
m
o
d
el

a
ss
u
m
p
ti
o
n
s
a
re

re
st
ri
ct
ed
.

f M
o
d
el
s
b
ey
o
n
d
th
o
se

re
ly
in
g
o
n
m
u
lt
iv
a
ri
a
te

n
o
rm

a
li
ty

w
il
l
n
ee
d
la
rg
e
d
a
ta

se
ts
.

M
o
re

d
et
a
il
is
p
ro
v
id
ed

in
th
e
re
v
ie
w

te
m
p
la
te
s
in

th
e
w
eb

a
p
p
en
d
ix

a
t
h
tt
p
:/
/w

w
w
.h
er
c.
o
x
.a
c.
u
k
/d
o
w
n
lo
a
d
s/
su
p
p
o
rt
_
p
u
b
.

STATISTICAL METHODS FOR HEALTHCARE RESOURCES AND COSTS 907

Copyright r 2010 John Wiley & Sons, Ltd. Health Econ. 20: 897–916 (2011)

DOI: 10.1002/hec



some data sets. It is generally unclear what number or proportion of zeros in data would deem the use of
these approaches desirable. When more general multimodality is present, methods based on mixtures of
distributions, modelling the whole distribution of the data through a non-parametric density
approximation, and modelling different data components or Markov chain methods seem promising
approaches.

3.3. Other characteristics of the analytical approaches

3.3.1. Adjustment for covariates and need to back transform to the original scale. In randomised trials, it
is important to be able to adjust for covariates to gain precision in estimating the mean cost. Most of the
identified approaches allow adjustments for covariates to be incorporated. The analytical approach
based on initial transformation of the data has an added issue that transformation back to the original
scale is needed.

3.3.2. Sample size implications. Most of the analytical approaches identified have been applied to
samples of a few hundreds or thousands of observations, and their performance in more limited samples
is unclear. Some of the more complex approaches are clearly tailored for the situations when sufficient
data are available to inform them. The extended GLM approach proposed by Basu (2005), for example,
is not recommended for samples smaller that 5000, which would preclude its use in the majority of
randomised trials. Further research is needed to study the performance of approaches based on
mixtures of distributions, model averaging and data components in small samples. What is apparent is
that what might be considered a sufficient sample size is an empirical issue that will depend on the extent
to which skewness, heavy tails, excess zeroes and multimodality are present in the data. In circumstances
where few of these issues exist then a sample size in the hundreds may be large enough, but where these
issues are all present then a sample size of thousands may nevertheless be too small.

3.3.3. Ease of implementation. Approaches were judged ‘easy to implement’ if available in standard
statistical software. These include standard OLS, methods based on alternative distributions with and
without initial data transformations, the two-part models and the proportional hazards approaches.
Most of the more flexible analytical methods identified in this review are not readily available and
require expertise in statistical modelling and computation. These include approaches based on mixtures
of distributions, non-parametric density approximation, data components, model averaging and
Markov chain methods.

3.4. Comparing the performance of the analytical approaches

Many of the studies reviewed included an informal comparison of different methods and approaches
applied to the same data (Austin et al., 2003; Briggs and Gray, 1998; Buntin and Zaslavsky, 2004; Chen
and Zhou, 2006; Cooper et al., 2007; Lipscomb et al., 1998; Manning and Mullahy, 2001; O’Hagan and
Stevens, 2003; Zhou, 2002). O’Hagan and Stevens (2003) suggests that methods based on asymptotic
normality or simple bootstrap procedures could be inefficient in the case of skewed data and
recommends approaches that explicitly account for skewness (e.g. a lognormal distribution). Adjusted
bootstrap approaches to account for skewness (Barber and Thompson, 2000) and to approximate the
pivotal statistic (Tu and Zhou, 2000) are also suggested. The proportional hazards method was used as
one of the compared models in a number of papers (Austin et al., 2003; Basu et al., 2004; Dudley et al.,
1993; Lipscomb et al., 1998). This model shows good performance when the proportional hazards
assumption holds; a test for proportional hazards is suggested by Basu and Manning (2006). A number
of publications compare different models (Austin et al., 2003; Basu et al., 2004; Briggs and Gray, 1998;
Buntin and Zaslavsky, 2004) without recommending a particular approach.
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However, twenty of the papers identified included a more formal evaluation and comparison of
approaches, in the controlled environment of simulated data. A recent study suggests that, contrary to
earlier work, the Central Limit Theorem-based methods and the bootstrap perform well in small data
sets with substantial skewness (Nixon et al., 2009). Other studies have shown that methods based on
initial transformation perform well only when this transformation was appropriate for the data (Briggs
et al., 2005) and that extended GLM methods are likely to outperform the standard GLM and
approaches based on initial data transformation (Basu 2005; Basu et al., 2006; Manning et al., 2005).
A few studies have shown that approaches based on mixtures of parametric distributions outperform
single distribution alternatives in the case of heavy-tailed data (Conigliani and Tancredi, 2009; Deb and
Burgess, 2003; Deb and Trivedi, 1997).

4. DISCUSSION

4.1. Scope of the review

We aimed to review the methods currently available to evaluate mean healthcare resource use and costs,
likely to be relevant to randomised studies. Clearly, the process of identification of relevant studies to
include is not straightforward. While many studies report some analysis of resource use and cost data,
these analyses rarely aim to contribute to developing analytical methods. We have employed a
combination of literature searches and key researcher contacts to try and ensure that we have not
missed important contributions to the analytical approaches.

We have excluded some statistical methods judged beyond the scope of the review. These include
panel data methods that are often employed in econometrics to control for unobservable (longitudinal)
individual effects constant over time, instrumental variable approaches that are used to model the
selection bias when evaluating treatment effects based on non-experimental data, selectivity models as
these aim to adjust for selection biases that are usually resolved by the randomisation process in trials,
and parametric, semi-parametric and non-parametric methods not focusing on estimation of the mean
(such as ordered probit/logit, grouped data regression, multinomial logit, nested logit/probit, kernel-
based estimators, quantile regression not aimed at mean estimation) (Jones, 2000).

4.2. Extensions to cost differences and cost-effectiveness in trials

Two main approaches towards comparing means are often employed. First, direct comparison of means
and their uncertainty when no adjustment for covariates is present is widely used. Second, allocation to
treatment as a covariate in a regression model is considered. In this case, direct estimation of mean cost
difference is obtained only in the case of a linear model where treatment allocation is represented as an
additive effect on the original scale of data; otherwise transformations to the original scale are needed.
A further application of the covariate adjusted cost models reviewed here is as prediction equations for
the input parameters to decision analytic models. In such situations predictive validity will be very
important.

Extension to cost-effectiveness analysis implies the ability to set the analysis of costs and health
benefits in a correlated bivariate framework. Few of the reviewed papers explicitly considered extensions
to cost-effectiveness. Approaches from other published work suggest that this is done either by
considering net benefit, by non-parametric bootstrapping, or by setting up an explicit statistical model
that links costs and effects. As the net-benefit could have very different distributional properties over
ranges of willingness to pay values, this creates considerable problems for efficient analysis. The
bootstrap approach involves estimating the mean incremental cost (by whatever method is chosen) and
the mean incremental effect for each bootstrap sample; the succession of estimates provides a
distribution of points on the cost-effectiveness plane from which cost-effectiveness measures such as the
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incremental cost-effectiveness ratios and cost-effectiveness acceptability curves can be estimated. Setting
up an explicit statistical model that links costs and effects has proved challenging beyond the bivariate
normal situation (in which the incremental costs and effects follow a bivariate normal distribution). Any
extensions of this approach so far (i.e. two-part or mixtures approaches) have been implemented using
Markov Chain Monte Carlo (MCMC) methods, since maximum likelihood solutions may be difficult to
obtain (Lambert et al., 2008).

5. GUIDANCE TO ANALYSTS BASED ON THIS REVIEW

Most of the methods identified in the review have undergone limited testing in different situations and
their use in practice is very restricted. Therefore, no detailed guidance can be provided. In making
practical recommendations, we have not advocated many methods suggested in the literature. We have
dismissed the truncation methods of Marrazzi since their main aim is to be robust to contaminant
outliers, while we regard these ‘outliers’ as being part of the true distribution of costs. Other models that
have been used in the papers we reviewed appear too complicated for randomised trial data of usually
fairly small sample size, have only been shown to be of (sometimes rather slight) benefit in particular
data sets, and present formidable problems of implementation to applied analysts. We have outlined
three groups of methods, which we term ‘orbits’.

5.1. The green orbit

In the green orbit, we can apply simple methods because we have enough data. Analysis can be based on
assuming normal distributions for costs. Their underlying true distribution will of course not be normal,
but the analysis will depend only on sample means and variances. How do we know when we are in the
green orbit? The sample size must be large enough for a number of possible problems to disappear.

� Despite skewness, excess zeros, multimodality and/or heavy tails, the samples should be big
enough for the Central Limit Theorem to guarantee near-normality of sample means. How large
this is depends on the degree of skewness and also on the complexity of the covariate adjustment
or subgroup analysis that is to be performed.

� The number of large costs should be sufficient for the answers not to be unduly influenced by a
few very large outlying costs. This is related to the last point, but merits separate checking.

Whether we use frequentist or Bayesian analyses does not matter (because any prior information
should be weak enough to be overwhelmed by the data), and so is a matter of personal preference. In
broad terms, to be sure we are in the green orbit, we should certainly have several hundreds of
observations in each treatment group (or sub-group), and possibly thousands.

5.2. The amber orbit

In the amber orbit, we can still use relatively simple methods, but checking the sensitivity of the results
to assumptions is recommended. These methods will generally be able to deal with one or two of the
possible complications with cost data, but any increase in complexity rapidly takes us into the red orbit.

5.2.1. Alternative distributions. Where the data are skewed and/or heavy tailed, we can model the costs
using appropriate alternative distributions instead of assuming normality. Gamma distributions are not
recommended because they are sufficiently light tailed that the answers will often be similar to using
normal distributions (Manning and Mullahy, 2001). Inverse gamma or lognormal distributions may
often be appropriate, but particularly in the case of the lognormal distribution the results may be
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non-robust to outliers in the data. The log-logistic distribution may be too heavy tailed to often be
realistic in practice. Where there are enough data, or background knowledge, to suggest a particular
form of distribution, then analysis using this distribution can be recommended, but sensitivity to
alternative choices of distribution should be assessed (Nixon and Thompson, 2004).

5.2.2. Transformations. We can also consider transforming the costs to reduce skewness, so that
normality can be assumed on the transformed scale. Using the log transform comes with the same
caveat about non-robustness to outliers as lognormal models. (It also cannot be used if there are zero
costs in the data; the device of replacing zero by a small number is not recommended.) Other power
transformations may be considered. However, it is essential that an appropriate ‘back transformation’ is
used to produce inferences on the original cost scale, rather than on the transformed scale. Checking
sensitivity to the choice of transformation is recommended.

5.2.3. Generalised linear models. GLMs are an attractive approach when we have covariates, because
they offer some of the benefits of alternative distributions and/or transformation without the need to
back transform. Limitations of GLMs are that they are based implicitly on assuming a particular
distributional form (and so there is again a recommendation to check for sensitivity to this choice), and
that the frequentist inferences involve approximation. Also, unless the identity link function is used
(which may not always be realistic) there is still a back transformation issue that can lead to substantial
loss of precision from ignoring the fuller characteristics of the data generating process.

5.2.4. Two-part or hurdle models. These models specifically address zero costs, since the presence of zero
values in the data is usually incompatible with any assumed continuous distribution of costs. When
modelling resource use with discrete distributions, zeros may be expected, but two-part modelling may
still be indicated to deal with large numbers of zeros.

5.3. The red orbit

Methods in the red orbit are more complex and generally require substantial expertise, both in statistical
modelling and in computation. Many of these approaches are relatively (or even completely) untried in
practice. For highly complex models, the only practical computational tool to obtain results is Bayesian
MCMC methods. The substantial experience needed to use software for Bayesian analysis and MCMC
means that these methods are inevitably in the red orbit. We indicate here some other typical
combinations of circumstances that characterise being in the red orbit.

� When addressing skewness through alternative distributions or transformations, the presence of
covariates or censoring will typically mean that suitable analyses are complex and not available in
standard software.

� Multimodality may suggest either decomposing costs into resource use components, or else using
mixture models so as to link the prevalence of different mixture components to covariates (in the
same way as is usually done for the prevalence of zeros in two-part models). Another use for
mixture models is to allow the tail thickness of the cost distribution to be fitted separately from
the main body of data. Both resource use components models and mixture models are sufficiently
complex to belong in the red orbit.

� Where the analysis involves comparing different treatment groups or sub-groups, there will
typically be information to suggest some similarity between parameters of the different groups.
This kind of structural prior information may be modelled naturally in a Bayesian framework,
and can be influential in the analysis even when more quantitative prior information is lacking.
The resulting Bayesian hierarchical models are in the red orbit.
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Any suggested practical strategy comes with its own health warnings. It is based on our
interpretation and opinion of the current literature, and others may disagree. The recommendations
may be modified, or even overturned, by future research. Moreover, for any particular data set, it is
likely that special methods may be found which out-perform those suggested here; our intention is only
to give a strategy which we believe should have wide applicability. This initial guidance will evolve over
time with future research likely to enable more detailed guidance.

6. FUTURE RESEARCH

Further research comparing the performance of different methods on simulated as well as experimental
trial data is highly desirable. The literature review has suggested that mixture models could have
significant advantages in modelling skewed, heavy-tailed, multimodal data. Although a number of
applications have exemplified models of healthcare resource use employing this method, further
applications are needed to support its wider use. There are methods for analysing cost data that we
believe hold some promise for the future, but cannot at present be recommended for applied work. One
is model averaging approaches which make some allowance for the uncertainty in choosing an
appropriate statistical model (Conigliani and Tancredi, 2009). A second is models which allow for
potentially heavy upper tails, while allowing flexible (or even non-parametric) distributions for the bulk
of the data (Conigliani and Tancredi, 2005). A third is Bayesian approaches which incorporate
informative priors about distributional shape, particularly about the upper tails (O’Hagan and Stevens,
2003). The latter is in contrast to models, implemented in MCMC simply for computational
convenience, and that in general use priors intended to be non-informative. So far, data component
models have not been shown to lead to any improvement in efficiency and face significant technical
difficulties but the research in this area is limited (Hahn and Whitehead, 2003; Lambert et al., 2008).

A major limitation of the implementation of more complicated models in the field of randomised
trials is the need for the analytical framework to accommodate both costs and health effects and
evaluate the summary cost-effectiveness measures. In doing so, the analysis should allow for the
correlation structure of different outcomes. The future development of such approaches in different
situations is recommended, perhaps especially for two-part models or mixture models.
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